

Contextualized Embeddings Encode Monolingual and Cross-lingual Knowledge of Idiomaticity

Samin Fakharian and Paul Cook
University of New Brunswick
Fredericton, Canada

- Multiword Expressions (MWEs)
 - MWEs are lexicalized combinations of multiple words, which display some form of idiomaticity
 - Fixed expressions: by and large
 - Light verb constructions: take a walk
 - Verb-noun combinations: see stars
 - Issues of MWEs
 - Learning the semantics of MWEs is a challenge due to their varying degrees of compositionality
 - MWEs' importance in NLP
 - Commonly used in language and downstream applications like machine translation

- Potentially idiomatic expressions (PIEs)
 - Ambiguous between non-compositional idiomatic interpretations and transparent literal interpretations
 - Used as idioms or as literal combinations
 - English Examples → hit the road, skating on thin ice, off the hook

- VNCs are a common kind of MWE in English and cross-lingually
- Their meaning is often not predictable from the meanings of their component words
- Example → <u>hit the road</u>
 - 1. The marchers had <u>hit the road</u> before 0500 hours and by midday they were limping back having achieved success on day one.
 - Idiomatic → hit the road means 'start a journey'.
 - 2. Two climbers dislodged another huge block which <u>hit the road</u> within 18 inches of one of the estate's senior guides.
 - Literal

- The idiomatic interpretations of English VNCs are typically lexico-syntactically fixed (canonical forms)
- Canonical forms are based on:
 - Voice of the verb
 - The determiner
 - Number of the noun
- Example → <u>hit the road</u> is in canonical form
- Usages that are not in their canonical form are often literal
 - E.g., the road was hit, hit a road, hit the roads

- Research questions:
 - 1. Does an approach to identifying English and Russian PIEs that incorporates contextualized embeddings outperform prior approaches that do not use contextualized embeddings?
 - 2. Is an approach to identifying English and Russian PIEs that incorporates contextualized embeddings able to generalize to unseen expressions?
 - 3. Is an approach to identifying PIEs that incorporates contextualized embeddings able to generalize across languages?

Contributions:

- 1. Propose an approach to identifying PIEs as idiomatic or literal that incorporates pre-trained contextualized embeddings and outperforms the previous state-of-the-art for this task
- 2. Show that contextualized embeddings are able to capture the linguistic knowledge encoded in the canonical form feature in English VNCs
- 3. Demonstrate that the proposed approach is able to generalize to unseen expressions
- 4. Demonstrate that the proposed approach is able to generalize across languages

Proposed Model

- Our model:
 - A supervised approach
 - Based on contextualized embeddings
 - BERT, RoBERTa, RuBERT, mBERT
- Approaches to represent a PIE token instance
 - "CLS"
 - [CLS] token for the sentence in which it occurs for English experiments
 - [CLS] token for context of up to 300 characters to left and right of the target expression
 - 768-dimensional vector
- For English monolingual experiment we consider incorporating the canonical form feature (CF)

Proposed Model

- Fine-tuning pre-trained BERT, RoBERTa, RuBERT and mBERT models for binary classification of PIE token instances
 - Pre-trained model
 - 12 layers
 - Last layer of the pre-trained model (i.e., 12-th layer)
 - Classifier
 - Two fully-connected layers
 - Inputs
 - Representation of the VNC (with or without canonical form feature for English)
 - Labels
 - Idiomatic / Literal

- English → VNC-Tokens dataset
 - Contains 28 VNC types, and their instances are extracted from the British National Corpus
 - Manually labelled at the token level for whether they are literal or idiomatic usages
 - We used DEV and TEST parts of the dataset
 - Idiomatic and literal instances are roughly balanced across DEV and TEST
- Russian
 - A range of syntactic constructions including preposition+noun, preposition+adj+noun, and VNCs
 - Three sections containing classical prose, modern prose, and text from Russian Wikipedia
 - We consider only the Russian Wikipedia
 - Each instance is accompanied by a context window of up to three paragraphs
 - Idiomatic and literal instances are roughly balanced across RUSSIAN dataset

Set	# VNC Types	# Instances	% of Idiomatic Instances
EN - DEV	14	594	61%
EN - TEST	14	613	63%
Russian	37	775	54%

- "All Expressions" experimental setup
 - We randomly partition the instances of EN-DEV, EN-TEST, and RUSSIAN into training (roughly 75%) and testing (roughly 25%) sets, keeping the ratio of idiomatic to literal usages of each expression balanced across the training and testing sets
 - We repeat this random partitioning ten times
- Do we always have annotated instances of all PIE types?
 - No!

- "Unseen Expressions" experimental setup
 - Here we hold out all instances of one PIE type for testing and train on all instances of the remaining types (within either EN-DEV, EN-TEST and RUSSIAN)
 - We repeat this 14 times for each of EN-DEV and EN-TEST, holding out each VNC type once for testing and 37 times for RUSSIAN, holding out each PIE type once for testing
- Train and test models on EN-DEV → preliminary experiments and setting parameters
- Train and test models on EN-TEST → English final results
- Train and test models on RUSSIAN → Russian final results

- "Cross-lingual Expressions" experimental setup
 - Extension of the monolingual unseen expressions experimental setup
 - We evaluate on instances of PIEs in a language that was not observed during training
- Train models on EN-DEV or EN-TEST → Test models on RUSSIAN
- Train models on RUSSIAN → Test models on EN-DEV or EN-TEST

- Implementation and Parameter Settings
 - Huggingface implementations of BERT (bert-base-uncased), RoBERTa (roberta-base), RuBERT (rubert-base-cased) and mBERT (bert-base-multilingual-cased)
 - Adam optimizer to minimize cross-entropy loss
 - Default dropout
 - Batch sizes: 8, 16, 32
 - Epochs: 2, 3, 4
 - Learning rate: 2e-5, 3e-5, 5e-5
 - 10 runs with different random seeds

Evaluation

- Evaluation metric
 - Accuracy
- English baselines
 - Most frequent class baseline
 - Unsupervised approach by Fazly et al. (2009)
 - Unsupervised approach based on canonical form feature
 - Supervised approach by King and Cook (2018)
 - Supervised approach based on conventional word embeddings

Cotum	Model	EN-DEV		EN-TEST	
Setup		-CF	+CF	-CF	+CF
All	MFC	63.4	63.4	62.9	62.9
	CForm	75.0	75.0	71.1	71.1
	King and Cook (2018)	82.5	85.6	81.5	84.7
	BERT	90.7 ± 0.53	90.8 ± 0.51	89.3 ± 1.11	89.8 ± 0.71
	RoBERTa	88.3 ± 0.96	89.9 ± 0.66	88.6 ± 0.87	89.0 ± 0.48
	mBERT	84.1 ± 0.8	-	83.8 ± 1.1	-
Unseen	MFC	60.9	60.9	63.3	63.3
	CForm	73.6	73.6	70.0	70.0
	King and Cook (2018)	72.3	76.4	74.6	77.8
	BERT	83.5 ± 0.97	83.4 ± 0.65	78.6 ± 1.78	79.8 ± 1.55
	RoBERTa	81.8 ± 1.60	82.4 ± 1.20	82.3 ± 1.76	80.6 ± 2.35
	mBERT	75.4 ± 1.5	-	74.3 ± 2.2	-

- Findings (All expressions)
 - Contextualized embeddings can better capture knowledge of the idiomaticity of PIEs than previous approaches
 - Contextualized embeddings can better capture the linguistic knowledge encoded in the canonical form feature than conventional word embeddings
- Findings (Unseen Expressions)
 - The classifiers can capture information about the idiomaticity of PIEs
 - Information is not restricted to specific expressions, as in the case of the all expressions setup

Setup	Model	% Accuracy		
	MFC	54.1		
All	RuBERT	87.4 ± 4.7		
	mBERT	88.2 ± 2.8		
Unseen	MFC	54.3		
	RuBERT	74.6 ± 2.2		
	mBERT	73.6 ± 3.8		

- Findings (All expressions)
 - Contextualized embeddings can capture knowledge of the idiomaticity of PIEs that are not specific to any syntactic constructions
- Findings (Unseen Expressions)
 - The classifiers can capture information about the idiomaticity of PIEs that is not restricted to expressions that were observed during training

• We train on instances of PIEs in a source language, and evaluate on instances of PIEs in a target language

Source Language	Target language	Source dataset	Target dataset	Model	% Accuracy
English	Russian	EN-DEV	RUSSIAN	MFC	54.3
				mBERT	75.7 ± 3.0
		EN-TEST	RUSSIAN	MFC	54.3
				mBERT	72.4 ± 5.7
Russian	English	RUSSIAN	EN-DEV	MFC	60.9
				CForm	73.6
				mBERT	75.2 ± 2.0
		RUSSIAN	EN-TEST	MFC	63.3
				CForm	70.0
				mBERT	80.1 ± 1.3

- Findings (Cross-lingual)
 - The classifiers can capture information about the idiomaticity of PIEs cross-lingually
 - Information is not restricted to specific expressions, nor to a specific language

Conclusion

Contributions:

- 1. Proposed an approach to identifying PIE idioms as idiomatic or literal that incorporates pre-trained contextualized embeddings and outperforms the previous state-of-the-art for this task
- 2. Showed that contextualized embeddings are able to capture the linguistic knowledge encoded in the canonical form feature in English VNCs
- 3. Demonstrated that the proposed approach is able to generalize to unseen expressions
- 4. Showed that the proposed approach is able to generalize across languages

Conclusion

- Future work:
 - Further explore cross-lingual idiomaticity prediction
 - Include more languages in the analysis to be able to measure the impact of training on multiple source languages
 - Consider cross-lingual approaches for other MWE prediction tasks, such as predicting noun compound compositionality

Thank you!

Any Questions?