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The Task: Automatic Term Extraction (ATE)

“We meta-analyzed mortality using random-effect models.”
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● Prior approaches:

➢ Linguistic (e.g. POS patterns, phrase chunking…)

➢ Statistical (e.g. TF-IDF, C-Value…)

➢ Hybrid

● Traditional approaches generally operate on corpus or document level

● Recent approaches:

➢ Machine Learning:

● Topic modelling (e.g. Šajatović et al., 2019; Bolshakova et al., 2013)

● Search Engine Queries , Wikipedia Lookups (Link Probability, Key Concept Relatedness) (e.g. Qasemizadeh 
and Handschuh 2014)

➢ Deep Learning:

● Word Embeddings (Amjadian et al., 2016), Neural Networks (e.g. Kucza et al., 2018, Gao and Yuan 2019) 

The Task: Automatic Term Extraction (ATE)
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● Machine Learning ATE strongly depends on provided features

➢ Still requires linguistic pre-processing

➢ Model is specific to a languages’ / domain’s feature set

● Deep learning addresses the issue of language / domain-dependence

➢ Enables “featureless” end-to-end models for ATE (Gao and Yuan 2019)

The Task: Automatic Term Extraction (ATE)
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Evaluating ATE performance

● Traditionally precision, recall and F1

● Total number of terms in texts often unknown, therefore only precision is reported

➢ Hybrid methods improve precision, not recall

➢ Recall is mostly dependent on manually set cut-off point

● For comparability, we chose F1 and report both precision and recall
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Other related work (excerpt)

● Kyo Kageura and Bin Umino. 1996. Methods of automatic term recognition: A review. 
Terminology. International Journal of Theoretical and Applied Issues in Specialized 
Communication, 3(2): 259–289.

● Nikita Astrakhantsev. 2018. ATR4S: toolkit with state-of-the-art automatic terms recognition 
methods in scala. Language Resources and Evaluation,52(3): 853–872.

● Amir Hazem, Mérieme Bouhandi, Florian Boudin, and Beatrice Daille. 2020. TermEval 2020: 
TALN-LS2N system for automatic term extraction. In Proceedings of the 6th International 
Workshop on Computational Terminology, pages 95–100, Marseille, France. European 
Language Resources Association.

● Ayla Rigouts Terryn, Veronique Hoste, Patrick Drouin, and Els Lefever. 2020. TermEval 2020: 
Shared task on automatic term extraction using the annotated corpora for term extraction 
research (ACTER) dataset. In Proceedings of the 6th International Workshop on Computational 
Terminology, pages 85–94, Marseille, France. European Language Resources Association.
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Methods: Comparing 3 Models

1. Sequence Classifier – XLM-RoBERTa (Conneau et al., 2020)

2. Token Classifier – XLM-RoBERTa

3. Neural Machine Translation (NMT) – mBART (Liu et al., 2020)
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Methods: Sequence Classifier and Token Classifier
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Sequence Classifier
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Sequence Classifier
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XLM-R Token Classifier
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Methods: Neural Machine Translation 
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mBART NMT

mBART

 “We meta-analyzed mortality using random-effect 
models.”

meta-analyzed ; mortality ; random-effect models

Methods: Neural Machine Translation 
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Datasets

● ACTER (Annotated Corpora for Term Extraction Research) (Rigouts et. al 2019)

➢ Available at https://github.com/AylaRT/ACTER

➢ 3 languages (EN, FR, NL), 4 domains

➢ Approx. 200,000 words per language (50/25/25 Train, Val, Test split)

➢ Terms as structured list of unique terms (no inline annotations)

➢ Clear baseline thanks to TermEval 2020 Shared Task

➢ Single annotator, experienced in ATE (not domain specialist)

https://github.com/AylaRT/ACTER


15

Datasets

● ACL RD-TEC 2.0 (Quasemi Zadeh and Schumann, 2016)

➢ Available at https://github.com/languagerecipes/acl-rd-tec-2.0

➢ English, computational linguistics domain

➢ Approx. 50,000 words (471 abstracts)

➢ No suggested Train, Val, Test split

➢ No readily available baselines

➢ Offers inline annotations

➢ Annotated by two domain experts
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Average training time on ACTER
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Results: ACTER (Heart-Failure domain) 

Sequence Clf. Token Clf. NMT

Prec. Rec. F1 Prec. Rec. F1 Rec. Prec. F1

EN 30.9 84.0 46.0 55.3 61.8 58.3 50.2 61.6 55.2

FR 34.6 79.0 48.1 65.4 51.4 57.6 55.0 60.4 57.6

NL 40.4 91.5 58.0 67.9 71.7 69.8 60.6 70.0 64.9
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Results: ACL RD-TEC 2.0 (Evaluate on 20% of data) 

Token
Clf.

NMT

Prec. Rec. F1 Prec. Rec. F1

Annotator 1
74.4 77.2 75.8 73.2 77.2 75.2

Annotator 2

80.1 79.3 80.0 79.4 80.7 80.0
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Term-based analysis of false positives/negatives

● Acronyms generally handled well by all models

➢ Exception: e.g. “LV strain rate”, only parts extracted →  False negatives

● Very long terms often not extracted 

➢ e.g. “resynchronization reverses remodeling in systolic left ventricular dysfunction”

➢ Tendency of Token Classifier to split longer terms

● False positives are often nested terms (single-word terms in multi-word entities)

● NMT model might translate (parts) of terms (e.g. “toxicité cardiaque” extracted as “toxicity 
cardiaque”)
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Results: Term Length 

Single-word terms are easier to extract than multi-word terms
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Term-based analysis (Terms by term-type on ACTER Dataset)
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Results: Scores 

- Compared to previous SOTA baselines (ACTER / Termeval2020)
- +11.6 for EN

- +9.5   for FR

- +51.1 for NL

- Strong Zero-Shot performance

- Higher recall than traditional methods
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Key Takeaways 

● Comparison of 3 models working across languages and domains

● Token classifier and NMT strongly outperform previous approaches

● Models work with the limited context of single sentences

● Multi-word terms are more challenging than single-word terms
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Discussion

● Training data quality matters more than quantity for pretrained models

➢ Mixing datasets not trivial, as term definition varies between projects

● Discontinuous Entities, nested terms

● Single- or Multilingual Training

● Future Work: 

➢ Consider extra-sentential context

➢ Publish own dataset

➢ Improve multi-word term handling
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