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MWE Workshop



Goal

e devise a method for recognising multi-word lexical units (MWLUs) from
multi-word expressions (MWEs) found in:

e Princeton WordNet (Fellbaum, 1998)

e and in enWordNet (Rudnicka et al., 2015), a small extension of WordNet
developed by the plWordNet team on the basis of mapping

where

e MWEs - (PWN and enWN lemmas consisting of) at least two graphic words
separated by space(s) (cf. Sag et al., 2002)
e MWLUs - lexicalised MWEs (recorded by dictionaries) (Maziarz et al., in print)



MWEs vs MWLUSs

e MWEs: ‘idiosyncratic interpretations that cross word boundaries (or spaces)”
(Sag et al. 2002)
e varying degree of syntactic and/or semantic idiosyncrasy leads to a varying

degree of lexicality of different types of MWESs such as:
o idioms,

proper names,

fixed phrases,

compound nouns,

collocations.

e \Which MWEs can be treated as lexicalised multi-word lexical units (MWLU)s?
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What do we need the MWE/MWLU distinction for?

e To know which strings of words function as words themselves and cannot be
annotated through their component parts only (McCrae et al. 2020)

e NLP tasks that need MWE/MWLU identification:
morpho-syntactic tagging

parsing

sense annotation

word-sense disambiguation

text understanding

o O O O O



Direct motivation

e the list of WordNet MWESs treated as gold standard for NLP applications
(Pearce, 2001; Farahmand et al., 2014; Schneider et al., 2014; Riedl &
Biemann, 2016)

e many of these MWEs of questionable lexicality, such as:

o elements of wordnet taxonomy, e.g. biological group, animal group
o quantifier phrases, e.q. piece/article of furniture

o collocations: rich people, psychology department

O

e \Which MWEs do we want in a wordnet and how shall we tag them?



Towards a method for MWLU recognition

e Building an MWE dataset
e Annotating samples
e Applying statistical models



Building an MWE dataset

e Step 1. extract MWEs from WordNet and enWordNet, understood as wordnet
senses with lemmas built of at least two graphic words separated by space(s)
Step 2: filter out proper names:

MWEs from synsets holding /nstance and/or I-instance relations

Step 3: filter out specialist terminology of biology and chemistry:

MWEs from synsets with hyponymy relation to {biological group 1}, {chemical
element 1}, {chemical 1}

Results:

e nouns 33.7k, verbs 4.4k, adjectives 0.5k, adverbs 0.8k



Annotating a 200 MWE sample

e arandom 200 MWE sample drawn from the 39.4k MWE dataset
e MWEs annotated by a pair of lexicographers for their presence in general use
English dictionaries:
o Oxford Lexico,
o Merriam Webster,
o Collins,
o Longman

e Crucially, both MWE lemmas and their PWN and enWN senses checked
e MWEs with lemmas and senses present in any of the dictionaries considered
lexicalised.



Rule-based approach (1)

e a 200 MWE sample checked for:
o |-synonymy,
o the presence of an MWE lemma in a conglomerate Polish-English ‘cascade’
dictionary (Kedzia et al., 2013)

e These features were annotated automatically.



Rule-based approach (2): Making use of the I-synonymy
relation

e I(nterlingual) synonymy relation links unique pairs of synsets from pl\WordNet

and WordNet and enWordNet (Rudnicka et al. 2012)
o understood as large correspondence between meanings and relation structures of
the synsets from the two wordnets
e Hypothesis:
o Senses from synsets holding I-synonymy relation likely to be lexicalised in the two
languages
e Reservation:
o the degree of correspondence between specific pairs of English-Polish senses
may not the same within a given pair of Polish-English synsets.



Rule-based approach (3)

e Results (200 MWE sample):
o Precision for the MWLU class = 76%, Recall = 26% (too low), [“surefire”]
o Precision for the non-MWLU class = 42%, Recall = 87% [“trash”]

e Results (whole PWN):
o 6,390 potential MWLUs / 39,406 English MWEs.

o Additional evaluation (18 MWEs randomly sampled from potential MWLUs):
m Precision for the MWLU class = 76%.




Statistical approach (1)

e a 200 MWE sample checked for

o 6 lexicality features,
o ridge logistic regression.



Statistical approach (2): Lexicality features

e |-synonymy;

e the presence of an MWE Ilemma in a conglomerate Polish-English ‘cascade’
dictionary (Kedzia et al., 2013);

e the length of an MWE in terms of the number of its characters (excluding
spaces);

e the length of an MWE in terms of the number of spaces between component
words;

e the cosine similarity between (MP sentence transformer vectors, calculated
separately for an MWE lemma itself and its WordNet gloss);

e the ordinal number of an MWE sense in PWN.



Statistical approach (3)

e Results (200 MWE sample):
o Precision for the MWLU class = 83%, Recall = 45%, [“surefire”]
o Precision for the non-MWLU class = 49%, Recall = 83%. [‘trash”]

e Results (the whole PWN):

o 18.971 potential MWLUs / 39,406 MWEs.
o Additional evaluation (50 MWEs randomly sampled from potential MWLUS):
m Precision for the MWLU class = 81%.




Conclusions

both models perform well with respect to singling out non-MWLUs
the models achieved good precision with respect to MWLU recognition
still about a half of MWLUs were not found

better models needed:
o Dbetter features e.g. I-synonymy replaced with a more detailed sense-level relation
of strong and reqular equivalence (Rudnicka et al., 2019)
o collocation strength measures could be added

we obtained a gold standard-like list of MWLUs from PWN
open question: is our dictionary-based definition of lexicality useful?



Datasets

e We publish the datasets used in this research under the CC BY-SA 4.0
licence on GitHub:
* https://qgithub.com/MarekMaziarz/Multi-word-lexical-units

 https://clarin-pl.eu/dspace/handle/11321/853



https://github.com/MarekMaziarz/Multi-word-lexical-units
https://clarin-pl.eu/dspace/handle/11321/853
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* Thank you very much for your attention

e Contact: marek.maziarz@pwr.edu.pl, ewa.rudnicka@pwr.edu.pl,
lukasz@uni.opole.pl
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Lexicality of MWEs in dictionaries

* We used Collins, Longman, Lexico and Merriam-Webster (the fantastic
four):
* large and renowned
 Collins COBUILD (ca %5 of the dictionary MWLUSs):
« verbalised MWE policy = semantic and syntactic idiosyncrasy.

» Lexico & Merriam-Webster (Maziarz et al., in print):
» the same conclusions: semantic non-compositionality and strong collocations
were added.

* Problem:
* the size of a dictionary affects the number of MWES treated as lexicalised,

« solution: take many different large dictionaries.



