A Survey of MWE Identification Experiments: The Devil is in the Details

Carlos Ramisch, Abigail Walsh, Thomas Blanchard, and Shiva Taslimipoor MWE 2023 Workshop

Outline

Introduction and scope

Corpus constitution and selection

Pre- and post-processing

Evaluation metrics

Significance

Error analysis

Full-text multiword expression identification - sequence annotation

 $\rightarrow~$ Focus of recurrent shared tasks (ST): DiMSUM & PARSEME

Survey's goal

- Analyses MWE identification papers with experiments on data
- Look at methodological issues often seen as minor or omitted
- Hypothesis: these issues influence results and conclusions

Scope

Selection criteria:

- Available on the ACL Anthology
- Focus on MWE identification (Constant et al. 2017)
- Report experimental results
 - DiMSUM or PARSEME shared task or system description OR
 - report experiments on DiMSUM or PARSEME corpora

Scope

Selection criteria:

- Available on the ACL Anthology
- Focus on MWE identification (Constant et al. 2017)
- Report experimental results
 - DiMSUM or PARSEME shared task or system description

OR

• report experiments on DiMSUM or PARSEME corpora

Paper stats

- 40 papers
 - ightarrow 4 overall ST papers
 - $ightarrow\,$ 27 ST system descriptions
 - $ightarrow\,$ 9 non-ST system descriptions

• Data

- ightarrow Corpora
- $\rightarrow~$ Pre- and post-processing
- $\rightarrow~$ Sequence label encoding and decoding
- Evaluation
 - ightarrow Metrics
 - $\rightarrow~$ Significance of comparisons
 - ightarrow Error analysis

1		2 Languages	3 Split of the corpora	3.4 Category of	4.1 Preprocessi	4.2 How are MV
2	PARSEME 1.0					
3	The PARSEME Shared Task on Autom	18: BG, CS, DE, EL,	train/test, no dev		N/A	N/A I
4	Parsing and MWE Detection: Fips at the	8: FR, EN, DE, IT, E	Not mentioned	VID, LVC, VPC,	Transformation b	N/A (
5	The ATILF-LLF System for Parseme Sh	18: BG, CS, DE, EL,	PARSEME data	PARSEME categ	Not mentioned	Binary-lexical tre '
6	Detection of Verbal Multi-Word Express	15: CS, DE, EL, ES,	PARSEME data	VPC, LVC, VID,	Not mentioned	Not mentioned
7	USzeged: Identifying Verbal Multiword I	9: DE, EL, ES, FR, H	PARSEME 1.0 (no dev	PARSEME 1.0 c	Remove long se	Single-token: rep \
8	A data-driven approach to verbal multiv	12: RO, FR, CS, DE	PARSEME 1.0 - cross	PARSEME 1.0 c	Not mentioned	Two steps: Heac
9	Neural Networks for Multi-Word Expres	15: BG, CS, DE, EL,	80% train, 10% dev, 10	PARSEME 1.0	Not mentioned	MWE category' (
10	PARSEME 1.1					
11	Edition 1.1 of the PARSEME Shared Ta	19: BG, DE, EL, EN,	3 languages had no de	LVC, VID, IRV, V	N/A	N/A I
12	CRF-Seq and CRF-DepTree at PARSE	19: BG, DE, EL, EN	PARSEME 1.1 data	PARSEME 1.1	Converting to XM	BI, BIO, and BIL 1
13	Deep-BGT at PARSEME Shared Task 2	10: BG, DE, ES, FR	PARSEME 1.1 data	All PARSEME 1.	Merging labels, r	gappy 1-level
14	GBD-NER at PARSEME Shared Task 2	19: BG, DE, EL, EN,	PARSEME 1.1 (no me	All PARSEME 1.	Not mentioned	sub-graphs, usin r
15	Mumpitz at PARSEME Shared Task 20	7: BG, DE, EL, ES, F	PARSEME 1.1 (they m	PARSEME 1.1, I	Categories ignor	Binary, whether a l
16	TRAPACC and TRAPACCS at PARSEN	19: BG, DE, EL, EN	PARSEME 1.1 (param	PARSEME 1.1	Not mentioned	Similar to ATILF 1
17	TRAVERSAL at PARSEME Shared Tas	19: BG, DE, EL, EN,	PARSEME 1.1 (develo	PARSEME 1.1	Case lifting (cha	Keep only catege
18	VarIDE at PARSEME Shared Task 201	19: BG, DE, EL, EN,	PARSEME 1.1 (no me	All PARSEME 1.	Ignore categorie	IDIOMATIC vs L I
19	Veyn at PARSEME Shared Task 2018:	19: BG, DE, EL, EN	PARSEME 1.1 (no tun	All PARSEME 1.	Duplicate senter	BIOG (Gaps), IC I
20	SHOMA at Parseme Shared Task on A	19: BG, DE, EL, EN,	PARSEME 1.1 data (n	AII PARSEME 1.	label conversion	Labels converter
21	PARSEME 1.2					
22	Edition 1.2 of the PARSEME Shared Ta	14: DE, EL, EU, FR,	train/dev/test for all lar	LVC, VID, IRV, V	N/A	N/A I
23	MultiVitaminBooster at PARSEME Shar	7: DE, EU, GA, HI, I	PARSEME 1.2	AII PARSEME 1.	N/A	Only 'MWE cate
24	MTLB-STRUCT @Parseme 2020: Can	14 DE EL ELLER	PARSEME 1.2	AIL PARSEME 1	label conversion	The begining tok

Introduction and scope

Corpus constitution and selection

Pre- and post-processing

Evaluation metrics

Significance

Error analysis

Shared tasks

- DiMSUM: 3 domains, 1 lang, train + test
- PARSEME 1.0: news, 18 lang, train + test
- PARSEME 1.1: news, 19 lang, train + test + dev (16 lang)
- PARSEME 1.2: news, 14 lang, train + test + dev

 $\rightarrow\,$ Biased split: focus on unseen MWEs

- Training corpus unused: 4/36 papers
 - \rightarrow External resources (2 papers), other corpora (2 papers)
- Development corpus not provided:
 - \rightarrow Custom train-dev set: 6/36 papers
 - ightarrow Cross-validation: 3/36 papers
 - $\rightarrow~$ Dev on another language: 2/36 papers
 - ightarrow Dev corpus not mentioned: 3/36 papers

- Training corpus unused: 4/36 papers
 - \rightarrow External resources (2 papers), other corpora (2 papers)
- Development corpus not provided:
 - $\rightarrow~$ Custom train-dev set: 6/36 papers
 - ightarrow Cross-validation: 3/36 papers
 - $\rightarrow~$ Dev on another language: 2/36 papers
 - ightarrow Dev corpus not mentioned: 3/36 papers

Recommendation

Always mention development data

Languages

Introduction and scope

Corpus constitution and selection

Pre- and post-processing

Evaluation metrics

Significance

Error analysis

Variants of BIO-style encoding: 12/36 papers

DiMSUM	Τł	ne staff	leave	es	а	lot	to	be	desi	red .	
	C	0	В		b	i_	Ι_	Ι_	I.	. 0	
PARSEME	Ι	did		а	lot	of	stu	ıdy	and	research	
	*	1:LVC;2:L\	/C	*	*	*	1	L	*	2	*

- Gaps: 12/36 papers account for gaps
- Nesting and overlaps
 - $\rightarrow\,$ Ignored, handled by modifying BIO-style
 - $\rightarrow~$ Kept the tags as they are, dependency graphs
 - \rightarrow No mention (most papers)

Conversion from BIO-style

- Combination heuristics (7/36 papers)
 - $\rightarrow~$ B-labelled and I-labelled words matched
 - ightarrow Standalone I-labelled ignored
- Greedy-matching algorithm (1/36 paper)
- Viterbi decoding (1/36 paper)
- Conditional random fields (8/36 papers)
- Dependency trees (2/36 papers)
 - $\rightarrow~$ Elements of MWE assumed to be nodes in the same subtree

Conversion from BIO-style

- Combination heuristics (7/36 papers)
 - $\rightarrow~$ B-labelled and I-labelled words matched
 - ightarrow Standalone I-labelled ignored
- Greedy-matching algorithm (1/36 paper)
- Viterbi decoding (1/36 paper)
- Conditional random fields (8/36 papers)
- Dependency trees (2/36 papers)
 - $\rightarrow~$ Elements of MWE assumed to be nodes in the same subtree

Recommendation

Explicitly report all pre- and post-processing + MWE encoding

Introduction and scope

Corpus constitution and selection

Pre- and post-processing

Evaluation metrics

Significance

Error analysis

DIMSUM exact match and linked-based P, R and F1

PARSEME MWE-based and token-based P, R and F1

PARSEME focused measures:

- Seen/Unseen: focus of 9 papers
- Diversity: 2 PARSEME papers
- Discontinuity: focus of 5 papers

DIMSUM exact match and linked-based P, R and F1

PARSEME MWE-based and token-based P, R and F1

PARSEME focused measures:

- Seen/Unseen: focus of 9 papers
- Diversity: 2 PARSEME papers
- Discontinuity: focus of 5 papers

Recommendation

Focused measures help highlight system strengths and limitations

Introduction and scope

Corpus constitution and selection

Pre- and post-processing

Evaluation metrics

Significance

Error analysis

Compare systems A and B

- Test set
 - $x = x^{(1)} \dots x^{(m)} m$ input sentences
 - $y = y^{(1)} \dots y^{(m)} m$ reference MWE annotations
- Method :
 - 1. Apply A to x to obtain \hat{y}_A , compare to y
 - 2. Calculate evaluation metric M(A, x, y) (e.g. MWE-based F1)
 - 3. Do the same for B, obtain M(B, x, y)
 - 4. Calculate difference (effect)

$$\delta_{A-B}(x,y) = M(A,x,y) - M(B,x,y)$$

• $\delta_{A-B}(x,y) > 0 \implies A$ better than B?

- $H_0: \delta(X, Y) \leq 0 \implies$ if true, then A not better than B
- $H_1: \delta(X, Y) > 0$
- $X, Y \rightarrow$ random variables, all possible test sets
 - Of which x, y is an *m*-sized sample
- Reject $H_0 \implies$ significant difference between the systems
- **P-value**: probability of observing $\delta_{A-B}(x, y)$ while H_0 is true:
 - $p value = P[\delta(X, Y) \ge \delta_{A-B}(x, y)|H_0]$
 - probability to reject H_0 when it is true

Bootstrap p-value (Berg-Kirkpatrick et al. 2012)

Input

- Test set $x = x^{(1)} \dots x^{(m)}, y = y^{(1)} \dots y^{(m)},$
- Predictions $\hat{y}_A^{(i)}$ and $\hat{y}_B^{(i)}$ of systems A and B
- Evaluation metric $M(\cdot)$

```
deltaobs = M(A,x,y) - M(B,x,y) # observed difference
1
   for i in range(R) :
                      # R constant 10k
2
     xsample, ysample = sample(x,y,m) # m with repetition
3
    deltasample = M(A,xsample,ysample) - M(B,xsample,ysample)
4
    if deltasample > 2 * deltaobs :
5
          r = r + 1
6
7 pvalue = r/R
                                  # % of surprising results
  return pvalue
8
```

- Only 2/40 papers report significance
- Our tool estimates p-values for two CUPT predictions
 → https://gitlab.com/parseme/significance
- We compare all system pairs and metrics of PARSEME 1.2
 - ightarrow 2,728 p-values in total
 - \rightarrow 783 above the α = 0.05 threshold (29%)

Systems		TRAVIS-multi	Seen2Unseen	TRAVIS-mono
Systems	F1	0.6911	0.6892	0.6709
MTLB-STRUCT	0.7158	0.025	0.038	0.0
TRAVIS-multi	0.6911		0.464	0.081
Seen2Unseen	0.6892			0.103

Systems		TRAVIS-multi	Seen2Unseen	TRAVIS-mono
Systems	F1	0.6911	0.6892	0.6709
MTLB-STRUCT	0.7158	0.025	0.038	0.0
TRAVIS-multi	0.6911		0.464	0.081
Seen2Unseen	0.6892			0.103

Recommendation

Systematically calculate/report p-values for model comparison

Outline

Introduction and scope

Corpus constitution and selection

Pre- and post-processing

Evaluation metrics

Significance

Error analysis

- 33/36 papers report some error analysis
- 11/36 report MWE category or cross-language analyses
- Heterogeneous analyses
 - ightarrow Discontinuities, seen/unseen
 - $\rightarrow~$ POS sequences, syntactic structure
 - $\rightarrow~$ Ablation, role of external lexicons
 - $\rightarrow~$ Pre-trained embeddings, tagging schemes

- 33/36 papers report some error analysis
- 11/36 report MWE category or cross-language analyses
- Heterogeneous analyses
 - ightarrow Discontinuities, seen/unseen
 - $\rightarrow~$ POS sequences, syntactic structure
 - $\rightarrow~$ Ablation, role of external lexicons
 - $\rightarrow~$ Pre-trained embeddings, tagging schemes

Recommendation

Error analyses uncover interesting phenomena for future work

Outline

Introduction and scope

Corpus constitution and selection

Pre- and post-processing

Evaluation metrics

Significance

Error analysis

We advocate reporting on experimental choices:

- corpus constitutions and selections
- pre- and post-processing
- evaluation metrics and significance testing of performance
- error analysis

We encourage focused measures that facilitate error analysis We propose a tool to predict p-values from 2 CUPT predictions

- Hyper-parameter tuning
 - $\rightarrow~$ Selection of the data
 - \rightarrow Strategy (e.g. grid search, random, etc.)
- Should manual evaluation of detected MWEs be performed?
- New evaluation protocols
 - $\rightarrow~$ e.g. are some MWE categories more important than others?

Thanks! Questions?

Acknowledgments

- SELEXINI project (ANR-21-CE23-0033-01)
- Ulysses PHC grant (45358QD)
- Marius Thorre, Silvio Cordeiro, Agata Savary, reviewers