

Idioms, Probing and Dangerous Things: **Towards Structural Probing for** Idiomaticity in Vector Space

Filip Klubička, Vasudevan Nedumpozhimana, John D. Kelleher 6th May 2023

19th Workshop on Multiword Expressions @ EACL, Dubrovnik, Croatia

HOST INSTITUTION

Trinity College Dublin Coláiste na Tríonóide. Baile Átha Cliath The University of Dublin

PARTNER INSTITUTIONS

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

I. Introduction

- semantics
- meaning
- literal vs. figurative
- idiomaticity

Natural Language Processing

- computational semantics
- meaning representations
- vector space models
- embeddings (word2vec, GLOVE...)
- language models (BERT, GPT-4...)

- explainable AI
- interpretable models
- BlackboxNLP (Alishahi et al. 2019)
- probing framework

- How is idiomaticity structurally encoded in vector space?
- Does the vector norm play a role in encoding idiomatic information?
- Is idiomatic usage encoded similarly to contextual incongruity?

Approach:

- apply the *probing with noise* framework
- repurpose existing idiom dataset into a probing dataset
- examine structural properties of a static and contextual encoder

II. Probing with Noise

- 1. Choose a linguistic property of interest, e.g. verb tense
- 2. Choose or design an appropriate dataset
- 3. Choose a word/sentence representation, e.g. BERT
- 4. Choose a probing classifier (i.e. the probe), e.g. MLP
- 5. Train the probe on the embeddings as input
- 6. Evaluate the probe's performance on the task (vanilla baseline)
- 7. Introduce systematic noise in the embedding
- 8. Repeat training, evaluate and compare

Embeddings = Vectors

- vectors = direction + magnitude
- direction (coordinates) defined by dimension values
- magnitude (length) defined by vector norm

- two information containers
 - vector dimensions
 - vector norm

Figure 1. An illustrative example of a vector space model.

III. Idiom Probing Dataset

- a probing task needs to ask a simple, non-ambiguous question
- probing for idiomatic usage:
 - requires a simple task that can directly tease out idiomaticity
 - requires sentence-level instances
 - · requires same idiomatic phrase used both literally and idiomatically
- VNC-Tokens dataset (Cook et al., 2008)
 - English Verb-Noun (Idiomatic) Combinations
 - e.g. hit road, pull plug, make mark
 - 1205 sentences, 28 VN(I)Cs
 - 749 Idiomatic usage
 - 456 Literal usage

	Tr	ain set		Test set		
VNC	Total	Idiomatic	VNC	Total	Idiomatic	
blow top	28	23				
blow trumpet	29	19	1			
blow whistle	78	27	1			
get sack	50	43	1			
get nod	26	23	1			
get wind	28	13	1			
hit road	32	25				
hit roof	18	11	cut figure	43	36	
hit wall	63	7	find foot	53	48	
lose head	40	21	have word	91	80	
lose thread	20	18	hold fire	23	7	
make face	41	27	kick heel	39	31	
make hay	17	9	see star	61	5	
make hit	14	5	take heart	81	61	
make mark	85	72				
make pile	25	8	1			
make scene	50	30	1			
pull leg	51	11	1			
pull plug	64	44	1			
pull punch	22	18	1			
pull weight	33	27				
Total:	814	481	1	391	268	
Ratio:		0.5909	1		0.6854	

Table 1. A breakdown of VNCs and idiomatic instances in the chosen train and test split.

IV. Experiments

- GloVe (Pennington et al., 2014)
 - common crawl (2.2M tokens), cased
 - sentence embedding = average of word embeddings
 - 300-dimensional sentence embedding
 - off-the-shelf

- BERT (Devlin et al., 2018)
 - pytorch-pretrained-bert; bert-base-uncased
 - sentence embedding = average of final layer word embeddings
 - 768-dimensional sentence embedding
 - no fine-tuning
- probe model: Multi-Layered Perceptron (MLP)
- problem: binary classification
- evaluation metric: AUC_ROC score (0.5 = model does not discriminate)

GloVe					BERT				
Model	IUF		IUR		Model	IU_F		IU _R	
	auc	±CI	auc	±CI		auc	±CI	auc	±CI
rand. pred.	.4994	.0015	.4998	.0013	rand. pred.	.4997	.0015	.4998	.0013
rand. vec.	.4997	.0015	.5	.0013	rand. vec.	.4997	.0015	.5013	.0013
vanilla	.7485	.0003	.7717	.0022	vanilla	.8411	.0002	.8524	.0016
abl. N	.7445	.0006	.7687	.0021	abl. N	.8413	.0003	.8532	.0016
abl. D	.5012	.0018	.4993	.0015	abl. D	.4991	.0019	.4978	.0015
abl. D+N	.4991	.0018	.5005	.0015	abl. D+N	.4999	.0018	.5004	.0015

Tables 2 and 3. Probing results on GloVe and BERT models and baselines, including both the setting where the VNC's in the hold-out test set are fixed (IU_F) and the setting where they are resampled each time (IU_R). Reporting average AUC-ROC scores and confidence intervals (CI) of the average of all training runs. Note that cells shaded light grey belong to the same distribution as random baselines, as there is no statistically significant difference between the different scores; cells shaded dark grey belong to the same distribution as the vanilla baseline; and cells that are not shaded contain a significantly different score than both the random and vanilla baselines, indicating that they belong to different distributions.

- both vanilla GloVe and BERT significantly outperform random baselines
 - both GloVe and BERT encode a non-zero amount of idiomatic usage information
- vanilla BERT significantly outperforms vanilla GloVe
- IU_R outperforming IU_F indicates that predicting on IU_F is more challenging
 - the model is forced to rely on VNC-independent features to make predictions,
- no conclusive indication that the norm encodes idiomaticity information on this task
 - surprising contextual incongruity?

Task	Vectors	Glo	Ve	BERT		
		L1	L2	L1	L2	
	vanilla	-0.2231	-0.1786	-0.1490	-0.1756	
IU	abl. N	-0.0074	0.0276	-0.0397	-0.0167	

Table 4. Pearson correlation coefficients between class labels and L1 and L2 norms for vanilla vectors and vectors with ablated norms. For this analysis the Idiomatic label was mapped to 1 and the Literal label to 0.

- vanilla GloVe and BERT both norms have a weak negative correlation with IU labels
- correlation drops to ≈0 when ablating norm information, indicating information loss
 - does not align with previous experimental results ?
- negative correlation means that sentences containing idiomatic usage are positioned closer to the origin relative to sentences that contain literal usage
 - both GloVe and BERT vectors containing idiomatic usage are slightly shorter

Expectations:

- deleting half the vector's dimensions should cause a performance drop
- this should happen regardless of which half of the vector is deleted

GloVe					BERT				
Model	IUF		IUR		Model	IU_F		IU _R	
	auc	±CI	auc	±CI		auc	±CI	auc	±CI
rand. pred.	.4994	.0015	.4998	.0013	rand. pred.	.4997	.0015	.4998	.0013
rand. vec.	.4997	.0015	.5	.0013	rand. vec.	.4997	.0015	.5013	.0013
vanilla	.7485	.0003	.7717	.0022	vanilla	.8411	.0002	.8524	.0016
del. 1h	.7737	.0005	.7553	.0023	del. 1h	.8668	.0002	.8576	.0016
del. 2h	.7043	.0005	.7545	.002	del. 2h	.8137	.0003	.8368	.0016

Tables 5 and 6. Probing results on GloVe and BERT dimension deletion experiments, including both the setting where the VNC's in the hold-out test set are fixed (IU_F) and the setting where they are resampled each time (IU_R). Reporting average AUC-ROC scores and confidence intervals (CI) of the average of all training runs. Note that cells shaded light grey belong to the same distribution as random baselines, as there is no statistically significant difference between the different scores; cells shaded dark grey belong to the same distribution as the vanilla baseline; and cells that are not shaded contain a significantly different score than both the random and vanilla baselines, indicating that they belong to different distributions.

17

V. Limitations and Conclusion

- VNC-tokens dataset is not ideally suited for a probing scenario:
 - it is small (two orders of magnitude smaller than established datasets (Conneau et al., 2018))
 - limited in scope, focusing only on verb-noun compounds
 - a relatively older benchmark
 - imbalanced in terms of idiomatic/literal usage
 - does not control for sentence length, contains niche literary language and the occasional typo

• To do:

- align dataset with PARSEME annotation guidelines
- update it with additional example sentences

- both GloVe and BERT encode some idiomatic information to varying degrees
 - BERT encodes more
- both GloVe and BERT store idiomatic information in the second half of their vectors
 - the first half is even detrimental to the vector's overall idiomaticity encoding
- experiments yield inconclusive evidence as to whether idiomaticity is encoded in the vector norm: still an open question
- we also identify some limitations of the used dataset and highlight important directions for future work in improving its suitability for a probing analysis

Thank you for your attention!

e-mail: filip.klubicka@adaptcentre.ie twitter: @lemoncloak github: github.com/GreenParachute

School of Computer Science **Technological University Dublin** www.adaptcentre.ie

HOST INSTITUTION

HOST INSTITUTION

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath eland's Global University

A World Scienc Leading SFI Foundation Ireland For what's next Research Centre