

BERT-based Idiom Identification using Language

Translation and Word Cohesion

Arnav Yayavaram, Siddharth Yayavaram, **Prajna Upadhyay**, Apurba Das

BITS Pilani Hyderabad, India

Idioms

- Multi-word expression (MWE).
- Figurative meaning contextual.
- Hard to deduce from literal interpretations.

Challenges with Idioms

- Alters default semantic roles of syntactic categories.
- This poses significant challenges for Natural Language Processing (NLP) systems.
- Expression covers literal uses as well Potentially idiomatic expressions (PIE).

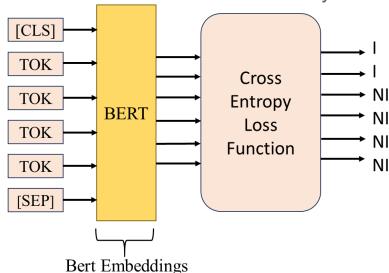
LREC-COLING 2024 Technical Challenges

Automatically detect if an idiomatic expression is present in a sentence.

If yes, identify the idiomatic tokens.

- Oh for about four years, on and off, he said vaguely. (Figurative)
- Participate in training, both on and off station. (Literal)

Problem Statement

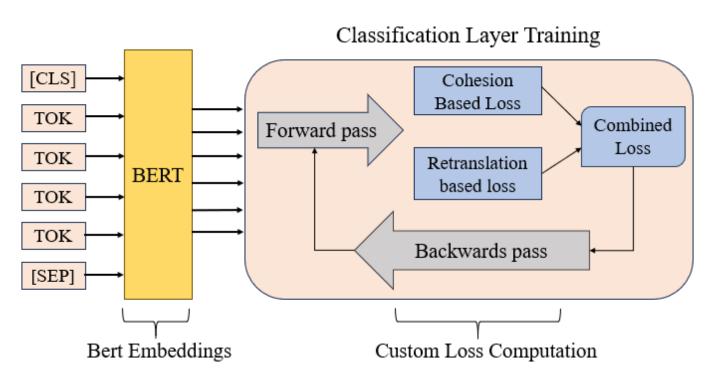

- Input:
 - A sentence S with n tokens w_1 , w_2 , ..., w_n where each wi represents a tokenized unit. S is a syntactic ordering over w_i 's.
 - Labels L = {I, NI} where
 - I represents idiom.
 - NI represents **not idiom**.
- Output: Generate a sequence of class labels $Z = z_1, z_2, ..., z_n$ where $z_i = f(w_i)$.
- **Objective:** Learn the function **f()**.

Deep Learning for Idiom detection

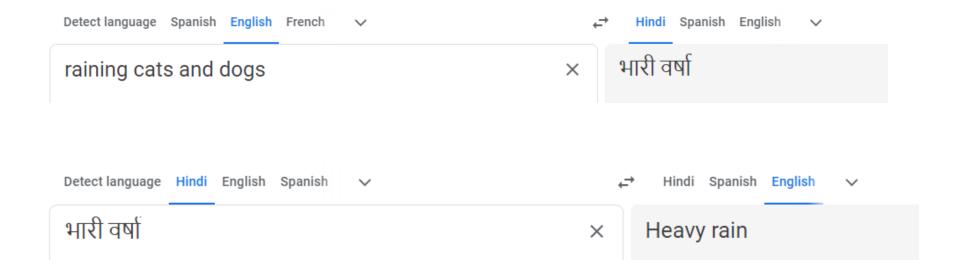
- Fine-tune BERT model on the idiom detection task.
- Cross Entropy Loss Function (£)
 Classification Layer

Deep Learning for Idiom detection: Challenges

- Idiom Token Classification suffers from class imbalance
 - Number of I tokens far lesser than number of NI tokens


Dataset	I	NI
EPIE Formal	10767	70522
EPIE Static	63012	583923

- Cross Entropy not suitable to handle class imbalance
 - Poor accuracy on I labels


Our solution: Custom Loss Function

Translation based Loss Function

Translation based Loss Function

- $S_{1,1}$ is the original sentence in L1 (English).
- $S_{L1 \rightarrow L2}$ is a translation of S_{L1} in L2 (Hindi).
- $S_{L1 \Leftrightarrow L2}$ is a translation of $S_{L1 \to L2}$ back to L1.
- The retranslation will be substantially different from each other with the presence of an idiom.
- We capture this difference through **METEOR*** score *MS*.
- Idea: $MS(S_{L1}, S_{L1 \Leftrightarrow L2})$ is low when S_{L1} is highly likely to contain idiom

$$\mathcal{L}_{retranslation} = \mathcal{L}(1 + \lambda_1 \mathbb{1}(\mathcal{MS} < \lambda_2))$$

*Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization

Cohesion based Loss Function

- **Idea**: Semantic compositionality* among the words in an idiom is low.
- We capture this idea with cohesion score C_S of a sentence S where

$$C_{\mathcal{S}} = \frac{1}{N} \sum_{w_i, w_j \in \mathcal{S}, i \neq j} \text{sim}(V(w_i), V(w_j))$$

- C_{S1} : cohesion score after removing the idiom from S.
- C_{S2}: cohesion score without removing the idiom from S.
- Our loss function:

$$\mathcal{L}_{cohesion} = \mathcal{L}(1 + \lambda_3 \mathbb{1}(|\mathcal{C}_{S_1} - \mathcal{C}_{S_2}| > \lambda_4))$$

^{*}Timothy Baldwin and Su Nam Kim. 2010. Multiword expressions. Handbook of natural language processing

Final Loss

Linear combination of **Translation Loss** and **Cohesion Loss**

$$\mathcal{L}_{final} = \tau_1 \mathcal{L}_{retranslation} + \tau_2 \mathcal{L}_{cohesion}$$

 T_1 T_2 control the effect of both losses

Experiments

- bert-base-uncased
- Training: **80%**, Validation: **10%**, Test: **10%**
- Learning rate: **2e-5**
- Epochs: 3
- λ1, λ2, λ3, λ4: **999**
- T_1 and T_2 : 0.01

Datasets

Dataset	total number of sentences	#idioms	#sentences containing idioms	average sentences per idiom
MAGPIE	36192	1727	27727	16.05
VNC-Tokens	2571	48	2111	43.97
theidioms	7380	1606	7830	4.87
formal	3136	358	3136	8.76
gtrans	440	22	440	20
gpt+gtrans	880	22	440	20
theidioms 1-1	1606	1606	1606	1

Metrics

Precision, Recall, F1

Macro Average

Weighted Average

$$\begin{split} P &= \frac{\sum_{i=1}^{N} (TP_i + FP_i) \times P_i}{\sum_{i=1}^{N} (TP_i + FP_i)} \\ R &= \frac{\sum_{i=1}^{N} (TP_i + FN_i) \times R_i}{\sum_{i=1}^{N} (TP_i + FN_i)} \\ F1 - \text{score} &= \frac{\sum_{i=1}^{N} (2 \times P_i \times R_i) \times (TP_i + FN_i)}{\sum_{i=1}^{N} (P_i + R_i) \times (TP_i + FN_i)} \end{split}$$

Where **P**: Precision; **P**_i: Precision of the i^{th} example; **R**: Recall; **R**_i: Recall of the i^{th} example; **N**: Number of classes (2 in our case); **TP**_i: True Positives for class i; **FP**_i: False Positives for class i; **FN**_i: True Negatives for class i.

Sequence Accuracy

Results

			Precision			Recall			F1		
Dataset	Method	Precision	Precision Macro Avg	Precision Weighted Avg	Recall	Recall Macro Avg	Recall Weighted Avg	FI	F1 Macro Average	F1 Weighted Average	Accuracy
gtrans	Regular Cross Entropy Loss	[85.93,93.87]	89.9	92.38	[72.39,97.27]	84.83	92.61	[78.54,95.53]	87.04	92.36	92.61
	Translation Retranslation Loss	[86.94,96.71]	91.83	94.89	[85.68, 97.03]	91.36	94.91	[86.30,96.87]	91.59	94.9	94.91
	Cohesion based Loss	[86.76, 96.71]	91.74	94.85	[85.69 ,96.99]	91.33	94.87	[86.21,96.85]	91.53	94.86	94.87
	Combination	[86.86,96.58]	91.72	94.76	[85.07, 97.03]	91.05	94.79	[85.94,96.80]	91.38	94.77	94.79
gpt>rans	Regular Cross Entropy Loss	[80.4,97.84]	89.12	96.09	[80.79,97.78]	89.29	96.06	[80.53,97.81]	89.17	96.07	96.07
	Translation Retranslation Loss	[83.91,98.85]	91.38	97.34	[89.83,98.06]	93.94	97.23	[86.74,98.45]	92.59	97.27	97.23
	Cohesion based Loss	[83.05, 99.02]	91.03	97.41	[91.37 ,97.91]	94.62	97.25	[86.99,98.46]	92.73	97.3	97.25
	Combination	[83.97 ,98.83]	91.4	97.33	[89.64, 98.08]	93.86	97.23	[86.70,98.45]	92.58	97.26	97.22

Results

			Precision			Recall			F1		
Dataset	Method	Precision	Precision Macro Avg	Precision Weighted Avg	Recall	Recall Macro Avg	Recall Weighted Avg	F1	F1 Macro Average	F1 Weighted Average	Accuracy
theidioms	Regular Cross Entropy Loss	[86.61,95.33]	92.07	95.75	[87.37,97.37]	92.36	95.73	[86.98,97.45]	92.21	95.74	95.73
	Translation Retranslation Loss	[91.60,98.68]	95.13	97.52	[93.24,98.33]	95.78	97.5	[92.40,98.50]	95.45	97.51	97.5
	Cohesion based Loss	[91.62, 98.83]	95.22	97.65	[94.03 ,98.32]	96.17	97.62	[92.8,98.57]	95.69	97.63	97.62
	Combination	[91.76 ,98.77]	95.26	97.63	[93.73, 98.36]	96.05	97.61	[92.73,98.56]	95.65	97.61	97.61
formal	Regular Cross Entropy Loss	[90.04,99.18]	94.6	97.89	[95.02,98.29]	96.65	97.82	[92.46,98.73]	95.59	97.84	97.83
	Translation Retranslation Loss	[93.34,99.69]	96.52	98.8	[98.13,98.86]	98.49	98.76	[95.68,99.27]	97.48	98.77	98.75
	Cohesion based Loss	[92.47, 99.75]	96.11	98.73	[98.51 ,98.69]	98.6	98.67	[95.39,99.22]	97.31	98.68	98.67
	Combination	[93.71 ,99.70]	96.71	98.87	[98.22, 98.92]	98.57	98.82	[95.92,99.31]	97.61	98.84	98.83

Results

			Precision			Recall			F1		
Dataset	Method	Precision	Precision Macro Avg	Precision Weighted Avg	Recall	Recall Macro Avg	Recall Weighted Avg	F1	F1 Macro Average	F1 Weighted Average	Accuracy
MAGPIE	Regular Cross Entropy Loss	[94.1,99.27]	96.68	98.74	[93.64,99.32]	96.48	98.74	[93.87,99.3]	96.58	98.74	98.74
	Translation Retranslation Loss	[93.96, 99.31]	96.64	98.76	[93.99 ,99.31]	96.65	98.76	[93.98,99.31]	96.64	98.76	98.76
	Cohesion based Loss	[94.22,99.28]	96.75	98.76	[93.77,99.34]	96.55	98.76	[93.99,99.31]	96.65	98.76	98.76
	Combination	[94.5 ,99.29]	96.89	98.79	[93.78, 99.37]	96.58	98.8	[94.14,99.33]	96.73	98.79	98.8
VNC	Regular Cross Entropy Loss	[97.19,99.64]	98.41	99.43	[96.14,99.74]	97.94	99.43	[96.66,99.69]	98.17	99.43	99.43
	Translation Retranslation Loss	[97.99, 99.81]	98.9	99.66	[97.99 ,99.81]	98.9	99.66	[97.99,99.81]	98.9	99.66	99.66
	Cohesion based Loss	[98.13,99.76]	98.94	99.62	[97.37,99.83]	98.6	99.62	[97.75,99.79]	98.77	99.62	99.62
	Combination	[98.45,99.81]	99.13	99.7	[97.99,99.86]	98.92	99.7	[98.22,99.83]	99.03	99.7	99.7

Cross - Domain Results

			Precision			Recall			F1		
Train, Test	Method	Precision	Precision Macro Avg	Precision Weighted Avg	Recall	Recall Macro Avg	Recall Weighted Avg	F1	F1 Macro Average	F1 Weighted Average	Accuracy
theidioms, gtrans	Regular Cross Entropy Loss	[84.73,96.41]	90.39	94.11	[84.78,96.29]	90.54	94.1	[84.57,96.35]	90.46	94.11	94.1
	Translation Retranslation Loss	[89.3 ,98.21]	93.76	96.51	[92.46, 97.39]	94.93	96.45	[90.85,97.8]	94.33	96.48	96.45
	Cohesion based Loss	[89.3,98.39]	93.84	96.65	[93.21 ,97.37]	95.29	96.57	[91.21,97.87]	94.54	96.6	96.57
	Combination	[89.20,97.97]	93.59	96.3	[91.42, 97.39]	94.4	96.25	[90.28,97.68]	93.98	96.27	96.25

LREC-COLING 2024 Comparison with DISC

Dataset	Method	Sequence Accuracy
MAGPIE	Regular Cross Entropy Loss	90.19
	Translation Retranslation Loss	91.31
	Cohesion based Loss	91.46
	Combination	91.51
	DISC ³	87.47
VNC	Regular Cross Entropy Loss	93.75
	Translation Retranslation Loss	96.88
	Cohesion based Loss	96.88
	Combination	96.88
	DISC	93.31

Discussion

Error Type	Sentence with PIE	Prediction
Multiple Expressions Predicted	I then walked across to the photographers and lost my temper and then lost my head.	lost my temper , lost my head
Alternate expression detected	Cantona will have to <i>kick his heels</i> on the sidelines if the manager had his way.	had his way
Extra tokens surrounding expression	Julia had her <i>attention caught</i> by the commotion.	attention caught by
Partial	His blistering turn of speed and attitude <i>made him an instant hit</i> with the fans.	hit
Predicting Nothing	Everyone talks about <i>hitting a wall</i> at the 24 mile mark.	Empty String

Table 5: Different error types along with examples and the incorrect prediction. The ground truth values have been colored blue in sentences.

Conclusion and Future Work

- We can adjust our own loss functions to refine different architectures effectively
- Systematically address each identified error category.
- Intuitive and efficient tool utilizing these fine-tuned models to detect an idiom in a given sentence

Thank You